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LETTER TO THE EDITOR

On the self-fractional Fourier functions
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Canto Blanco, 28049 Madrid, Spain
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Abstract. It is shown that a self-fractional Fourier function for an angle 2πN/M, whereN

and M are indivisible integers (N < M), is also a self-fractional Fourier function for angles
2πj/M (j = 1, 2, . . .). This allows us to define a self-fractional Fourier function of orderM.
An eigenvalue of a fractional Fourier operator for angle 2πj/M is equal to exp(±i2πLj/M),
whereL is an integer.

Self-imaging phenomena in optical or, in general, in physical systems refer to the fact that
an input function (wave field amplitude or wavefunction) is an eigenfunction of the operator
describing the given system. In this letter self-imaging in physical systems described by the
fractional Fourier transform (fractional FT) [1] is investigated. It is related to the analysis of
self-fractional Fourier functions (SFFFs), introduced in [2] , which are their own fractional
FTs at some angle, i.e. they are eigenfunctions of the corresponding fractional FT operator
with an eigenvalue equal to 1. SFFFs cover, as a particular case, self-Fourier functions
(SFFs) [3–6], whose Fourier transforms (FTs) are identical to themselves. It has also been
shown [2] how to generate an SFFF for an arbitrary angle from any transformable function.

In this letter the definition of an SFFF is generalized to the case of arbitrary eigenvalues,
whose possible values are determined. It is shown that an SFFF for any given angleα is
also one for angles 2πj/M, whereM is some integer dependent onα and j = 1, 2, . . . .

This allows us to define an SFFF of orderM and to clarify the procedure for the generation
of SFFFs.

The fractional FT at an angleα of a functionf (x) is given by [7, 8][
Rαf (x)

]
(u) =

∫ ∞

−∞
f (x)Kα(x, u) dx (1)

with the kernel

Kα(x, u) =
√

1 − i cotα

2π
exp

(
i
cosα(x2 + u2) − 2xu

2 sinα

)
(2)

being, except for a phase shiftα/2, equal to the propagator of the non-stationary Schrödinger
equation for a harmonic oscillator [9]. This equation also describes in a paraxial
approximation the wave propagation through a quadratic refractive index medium [8, 10, 11].
If α or α + π is a multiple of 2π the kernelKα(x, u) reduces toδ(x − u) or δ(x + u)

respectively. Thus, the fractional FT at angle 2πn (n is integer) corresponds to the identity
operator. Forα = π/2 relationship (1) is the ordinary Fourier transform (FT).
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We define here SFFFs in a slightly generalized sense as has been done in [4] for the
case of SFFs. A function is a self-fractional Fourier function for angleα if it satisfies the
following equation:

Rα
[
fα(x)

]
(u) = Afα(u) (3)

whereA is a complex constant factor. In other words,fα(x) is an eigenfunction of the
corresponding fractional FT operator with eigenvalueA. From (1), (2) and (3) it follows
that any arbitrary function is an SFFF forα = 2πn, a symmetric (even or odd) function is
an SFFF forα = πn and an SFF is an SFFF forα = πn/2, wheren is an integer.

The fractional FT is the periodic transform

Rα+2πn
[
f (x)

]
(u) = Rα

[
f (x)

]
(u). (4)

Therefore, one can always represent any angleα in the formα = 2πN/M, whereN and
M are indivisible integers andN < M.

Let us now prove that an SFFF for any angleα = 2πN/M is also one for the angle
2π/M andvice versa. From the additive property [7]

Rα
[
Rβ

[
f (x)

]
(v)

]
(u) = Rα+β

[
f (x)

]
(u) (5)

and (3) it immediately follows that if a function is an SFFF forα = 2πN/M it is also one
for αk = 2πkN/M (k = 1, 2, . . .)

R2πkN/M
[
f (x)2πN/M

]
(u) = R2π(k−1)N/M

[
R2πkN/M

[
f (x)2πN/M

]
(v)

]
(u)

= AR2π(k−1)N/M
[
f (x)2πN/M

]
(u) = · · · = Akf (x)2πN/M. (6)

In the particular caseN = 1 we obtain that if a function is an SFFF for angle 2π/M then
it is also one for the angles 2πk/M, wherek is an integer.

Taking into account the periodic property (4) let us show that angleαk = 2πkN/M for
somek reduces to angle 2π/M and, therefore, an SFFF forα = 2πN/M is an SFFF for
angle 2π/M. The fractional FT is cyclic, which means that after applying the cascade of
L fractional FTs at the angleα one retrieves an input function

RLα
[
f (x)

]
(u) = f (u) (7)

where the integerL depends on the angleα. Note that forα = 2πN/M the smallest
integer L satisfying (7) is equal toM, becauseN and M are indivisible integers and
N < M. By using the periodic property (4) any intermediate angle from this cascade
2πkN/M (k = 1, . . . , M) can be represented in the form 2πj/M, wherej is some integer
in the region[1, . . . , M]. Moreover, all integersj are different, because under the opposite
assumption one has the smallest integerL < M. So, one cycle of the fractional FTs at angle
α = 2πN/M consists ofM fractional FTs at the different angles 2πj/M (j = 1, . . . , M)
inside one period.

Therefore, if a function is an SFFF for an angleα = 2πN/M, whereN and M are
indivisible integers (N < M), it is also an SFFF for angle 2π/M andvice versa. As follows
from (7), this function is also an SFFF for angles 2πj/M (j = 1, 2, . . .). This fact allows
us to define an SFFF of orderM, which is an SFFF for angles 2πj/M. Note that an SFFF
of orderMm, wherem is an integer, is also an SFFF of orderM. Consequently, an SFFF
for angleπ/(2M) is also an SFF. So, during one period of the fractional FT, self-imaging
of an SFFF of orderM is observed no less thanM times.

Let us now define the eigenvalues of fractional FT operators. From the Parserval relation
for the fractional FT [7]∫ ∞

−∞
|fα(u)|2 du =

∫ ∞

−∞

∣∣Rα
[
fα(x)

]
(u)

∣∣2
du = |A|2

∫ ∞

−∞
|fα(u)|2 du (8)
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it follows that |A| = 1. Therefore, a factorA can be represented in the formA =
exp(±i2πϕ), where ϕ is a real constant. Ifϕ is an integer, thenA = 1 and one has
the exact self-reproducing.

Let us consider an SFFF of orderM with some eigenvalueA = exp(±i2πϕ). From the
cyclic property of the fractional FT (4) it follows that the cascade ofM fractional FTs at
angle 2π/M yields to self-reproducing itself, thenAM = exp(±i2πϕM) = 1. This means
that ϕ = L/M, whereL is an integer. Therefore, an eigenvalueA of the fractional FT
operator for angleα = 2π/M is equal toA = exp(±i2πL/M).

Finally, let us generate an SFFF for an angleα with some factorA.
As has been shown in [2] an SFFF withA = 1 for angleα = 2πN/M can be constructed

from a generating functiong(x) through the operation

f (x)2πN/M = [
R0 + R2πN/M + R2π2N/M + · · · + R2π(k−1)N/M

] [
g(u)

]
(x) (9)

wherek andL are the smallest integers that satisfykN/M = L.

In accordance with the above analysis an SFFF for any angleα = 2πN/M is an SFFF
of order M. Note that an SFFF of orderM can be an SFFF of orderMm. Therefore,
an SFFF for an angleα = 2πN/M is, in general, an SFFF of orderJ = Mm, which is
generated from an arbitrary transformable functiong(x) through the operation

f (x)2π/J =
J∑

k=1

exp

(
∓ i2πLk

J

)
R2π(k−1)/J

[
g(u)

]
(x) (10)

where integerm > 1. The smallest number of terms in sum (10) isM. Indeed, by using
the property (4) one obtains that

R2π/J
[
f (x)2π/J

]
(u) =

J∑
k=1

exp

(
∓ i2πLk

J

)
R2π/J

[
R2π(k−1)/J

[
g(v)

]
(x)

]
(u)

=
J∑

j=1

exp

(
∓ i2πL(j − 1)

J

)
R2π(j−1)/J

[
g(x)

]
(u)

= exp

(
± i2πL

J

)
f (u)2π/J . (11)

The corresponding eigenvalue for the fractional FT operator for angleα = 2πj/J

(j = 1, . . . , J ) is equal to exp(±i2πLj/J ), therefore for angleα = 2πN/M (j = mN )
A = exp(±i2πLN/M).
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